skip to main content


Search for: All records

Creators/Authors contains: "Bergman, Keren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate highly efficient vertical junction microdisk modulators with selective substrate undercut in a 300 mm CMOS foundry. The devices achieve record thermo-optic efficiency for sub-5ยตm radius, enabling next-generation low-energy, highly-parallel DWDM links.

     
    more » « less
  2. Abstract

    As computing resource demands continue to escalate in the face of big data, cloud-connectivity and the internet of things, it has become imperative to develop new low-power, scalable architectures. Neuromorphic photonics, or photonic neural networks, have become a feasible solution for the physical implementation of efficient algorithms directly on-chip. This application is primarily due to the linear nature of light and the scalability of silicon photonics, specifically leveraging the wide-scale complementary metal-oxide-semiconductor manufacturing infrastructure used to fabricate microelectronics chips. Current neuromorphic photonic implementations stem from two paradigms: wavelength coherent and incoherent. Here, we introduce a novel architecture that supports coherentandincoherent operation to increase the capability and capacity of photonic neural networks with a dramatic reduction in footprint compared to previous demonstrations. As a proof-of-principle, we experimentally demonstrate simple addition and subtraction operations on a foundry-fabricated silicon photonic chip. Additionally, we experimentally validate an on-chip network to predict the logical 2 bit gates AND, OR, and XOR to accuracies of 96.8%, 99%, and 98.5%, respectively. This architecture is compatible with highly wavelength parallel sources, enabling massively scalable photonic neural networks.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    As FPGA-based accelerators become ubiquitous and more powerful, the demand for integration with High-Performance Memory (HPM) grows. Although HPMs offer a much greater bandwidth than standard DDR4 DRAM, they introduce new design challenges such as increased latency and higher bandwidth mismatch between memory and FPGA cores. This paper presents a scalable architecture for convolutional neural network accelerators conceived specifically to address these challenges and make full use of the memory's high bandwidth. The accelerator, which was designed using high-level synthesis, is highly configurable. The intrinsic parallelism of its architecture allows near-perfect scaling up to saturating the available memory bandwidth. 
    more » « less
  5. null (Ed.)